What is the probability that a pen randomly pulled from a backpack containing 5 blue pens, 6 black pens, and 4 red pens is either red or black?

Prepare for the ASVAB Arithmetic Reasoning Test with engaging quizzes, flashcards, and detailed explanations. Enhance your skills and increase your chances of passing with confidence!

Multiple Choice

What is the probability that a pen randomly pulled from a backpack containing 5 blue pens, 6 black pens, and 4 red pens is either red or black?

Explanation:
To determine the probability of selecting either a red or a black pen from the backpack, we first need to establish the total number of pens in the backpack. The backpack contains: - 5 blue pens - 6 black pens - 4 red pens Calculating the total number of pens involves adding all the pens together: 5 (blue) + 6 (black) + 4 (red) = 15 pens in total. Next, we want to find out how many pens are either red or black. We have: - 6 black pens - 4 red pens Adding these together gives: 6 (black) + 4 (red) = 10 pens that are either black or red. The probability of drawing a pen that is either red or black is the number of successful outcomes (drawing a black or red pen) divided by the total number of possible outcomes (the total number of pens). Thus, the probability can be calculated as follows: Probability = Number of favorable outcomes / Total number of outcomes = 10 / 15. This fraction can be simplified: 10 / 15 = 2 / 3. Therefore, the correct answer is indeed 2/3, as it accurately

To determine the probability of selecting either a red or a black pen from the backpack, we first need to establish the total number of pens in the backpack.

The backpack contains:

  • 5 blue pens

  • 6 black pens

  • 4 red pens

Calculating the total number of pens involves adding all the pens together:

5 (blue) + 6 (black) + 4 (red) = 15 pens in total.

Next, we want to find out how many pens are either red or black. We have:

  • 6 black pens

  • 4 red pens

Adding these together gives:

6 (black) + 4 (red) = 10 pens that are either black or red.

The probability of drawing a pen that is either red or black is the number of successful outcomes (drawing a black or red pen) divided by the total number of possible outcomes (the total number of pens).

Thus, the probability can be calculated as follows:

Probability = Number of favorable outcomes / Total number of outcomes = 10 / 15.

This fraction can be simplified:

10 / 15 = 2 / 3.

Therefore, the correct answer is indeed 2/3, as it accurately

Subscribe

Get the latest from Examzify

You can unsubscribe at any time. Read our privacy policy